## general ellipse equation

 x2--a2 + y2--b2 = 1
 <=> y2--b2 = 1 - x2--a2
 <=> y2 = b2 * ( 1 - x2--a2 ) => y = sqrt [ b2 * ( 1 - x2--a2 ) ]

3 measured points P1(x1 | y1) ; P2(x2 | y2) ; P3(x3 | y3)

used equation in this case (half ellipse moved in y-direction):
 y = - sqrt [ b2 * ( 1 - x2--a2 ) ] + y0

### 1. possible solution

y = -sqrt( b2/a2 * (a2 - x2) ) + y0
y = -sqrt( b2/a2 ) * sqrt (a2 - x2) + y0

set z := -sqrt( b2/a2 )
y = z * sqrt (a2 - x2) + y0

system of equations:
 equation I: y1 = z * sqrt (a2 - x12) + y0 equ. II: y2 = z * sqrt (a2 - x22) + y0
compute equation I-II:
y1-y2 = z * ( sqrt (a2 - x12) - sqrt (a2 - x22) )
<=> z = (y1-y2) / ( sqrt (a2 - x12) - sqrt (a2 - x22) )
so one gets:
y2-y3 = z * ( sqrt (a2 - x22) - sqrt (a2 - x32) )
<=> z = (y2-y3) / ( sqrt (a2 - x22) - sqrt (a2 - x32) )
equalize z terms:
(y1-y2) / ( sqrt (a2 - x12) - sqrt (a2 - x22) )
= (y2-y3) / ( sqrt (a2 - x22) - sqrt (a2 - x32) )
get the reciproke values on both sides:
( sqrt (a2 - x12) - sqrt (a2 - x22) ) / (y1-y2)
= ( sqrt (a2 - x22) - sqrt (a2 - x32) ) / (y2-y3)
set y12 := y1-y2 and y23 := y2-y3
y23 * ( sqrt (a2 - x12) - sqrt (a2 - x22) )
= y12* ( sqrt (a2 - x22) - sqrt (a2 - x32) )
square of both sides:
y232 * ( (a2 - x12) - 2*sqrt ((a2 - x12)*(a2 - x22)) + (a2 - x22))
= y122 * ( (a2 - x22) - 2*sqrt ((a2 - x22)*(a2 - x32)) + (a2 - x32))

### 2. solution

set z: = (1 - x2 / a2)
y = -sqrt( b2 * z ) + y0
...

internal links: BACK to archive | software for students/pupils

(this page has been updated on August-29-2003)