BACK to archive
general ellipse equation
x
2
--
a
2
+
y
2
--
b
2
= 1
<=>
y
2
--
b
2
= 1 -
x
2
--
a
2
<=>
y
2
= b
2
*
(
1 -
x
2
--
a
2
)
=>
y = sqrt
[
b
2
*
(
1 -
x
2
--
a
2
)
]
3 measured points P
1
(x
1
| y
1
) ; P
2
(x
2
| y
2
) ; P
3
(x
3
| y
3
)
used equation in this case (half ellipse moved in y-direction):
y = - sqrt
[
b
2
*
(
1 -
x
2
--
a
2
)
]
+ y0
1. possible solution
y = -sqrt( b
2
/a
2
* (a
2
- x
2
) ) + y0
y = -sqrt( b
2
/a
2
) * sqrt (a
2
- x
2
) + y0
set z := -sqrt( b
2
/a
2
)
y = z * sqrt (a
2
- x
2
) + y0
system of equations:
equation I
:
y
1
= z * sqrt (a
2
- x
1
2
) + y0
equ. II
:
y
2
= z * sqrt (a
2
- x
2
2
) + y0
compute equation I-II
:
y
1
-y
2
= z * ( sqrt (a
2
- x
1
2
) - sqrt (a
2
- x
2
2
) )
<=> z = (y
1
-y
2
) / ( sqrt (a
2
- x
1
2
) - sqrt (a
2
- x
2
2
) )
so one gets
:
y
2
-y
3
= z * ( sqrt (a
2
- x
2
2
) - sqrt (a
2
- x
3
2
) )
<=> z = (y
2
-y
3
) / ( sqrt (a
2
- x
2
2
) - sqrt (a
2
- x
3
2
) )
equalize z terms
:
(y
1
-y
2
) / ( sqrt (a
2
- x
1
2
) - sqrt (a
2
- x
2
2
) )
= (y
2
-y
3
) / ( sqrt (a
2
- x
2
2
) - sqrt (a
2
- x
3
2
) )
get the reciproke values on both sides
:
( sqrt (a
2
- x
1
2
) - sqrt (a
2
- x
2
2
) ) / (y
1
-y
2
)
= ( sqrt (a
2
- x
2
2
) - sqrt (a
2
- x
3
2
) ) / (y
2
-y
3
)
set y
12
:= y
1
-y
2
and y
23
:= y
2
-y
3
y
23
* ( sqrt (a
2
- x
1
2
) - sqrt (a
2
- x
2
2
) )
= y
12
* ( sqrt (a
2
- x
2
2
) - sqrt (a
2
- x
3
2
) )
square of both sides
:
y
23
2
* ( (a
2
- x
1
2
) - 2*sqrt ((a
2
- x
1
2
)*(a
2
- x
2
2
)) + (a
2
- x
2
2
))
= y
12
2
* ( (a
2
- x
2
2
) - 2*sqrt ((a
2
- x
2
2
)*(a
2
- x
3
2
)) + (a
2
- x
3
2
))
2. solution
set z: = (1 - x
2
/ a
2
)
y = -sqrt( b
2
* z ) + y0
...
internal links:
BACK to archive
|
software for students/pupils
(this page has been updated on August-29-2003)